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Abstract

The formulation of reverberation-ray matrix analysis has been proposed to study wave propagation in planar frames. It

is applied here to modal analysis of complex three-dimensional framed structures, optionally with lumped masses and/or

elastic supports. Furthermore, by means of Betti’s reciprocity theorem, orthogonal conditions are established for different

natural modes, and hence transient response analysis based on mode superposition is developed. Both the reverberation-

ray matrix analysis for free vibration and the mode superposition method for transient response are illustrated by

numerical examples.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Structural dynamics is an important theoretical basis of many engineering activities associated with
engineering structures, such as design, construction, control, damage detection and seismic resistance. It
generally consists of two functions, i.e. free vibration analysis (modal analysis) and response analysis (steady-
state and transient analysis). Free vibration analysis is to find natural frequencies and natural modes, which
are the intrinsic dynamic properties of a structure. Response analysis is essential for evaluating the mechanical
behavior of structures since it gives relations between the intrinsic properties of structures and the external
excitations. Consequently, it is very important to develop approaches for reliable and accurate dynamic
analysis of structures [1].

Framed structures have been commonly used in civil and aeronautical engineering, such as long-span
bridges, high-rise buildings, offshore platforms, aircrafts and space vehicles, to name a few. Many dynamic
analysis methods for framed structures have been developed in matrix forms, which are suitable for computer
programming. Well-known examples include finite element method (FEM) [1], exact dynamic stiffness method
(EDSM) [2–4], transfer matrix method (TMM) [5], spectral element method (SEM) [6], and wave traveling
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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approach (WTA) [7,8]. The method of reverberation-ray matrix (MRRM) has been proposed based on a
much different physical basis from all existing methods [9–14], as will be shown later.

FEM, since its birthday around 1960, has demonstrated the wonderful power in solving engineering
problems. With FEM, natural frequencies and natural modes could be easily obtained by solving a generalized
eigenproblem, and the mode superposition method, which is based on the orthogonality of natural modes,
could be used as an alternative for transient response analysis [1,15–19]. However, finite element method is
approximate rather than exact, although the accuracy of results generally could be improved by increasing the
number of discrete elements. In particular, it will become computationally expensive for problems of wave
propagation, high-frequency response due to impact load, etc.

In contrast to FEM, EDSM employs exact solutions of the governing equations of a structural member
without any approximation. Since the corresponding characteristic equation, which determines the
frequencies, is a transcendental equation, special algorithms should be developed [2,3,20–28]. TMM also
starts from exact solutions, but formulated in a state space. It is very suitable for structures with units linked
end to end to form a chain. Note that both EDSM and TMM contain hyperbolic sine and cosine functions in
the resulting frequency equation. These functions with a positive index grow exponentially with the frequency
or length of structural member. Thus, numerical instability may be encountered in the numerical calculation
[5,13,29]. Nagem and Williams [30] proposed an interesting approach by combing the transfer matrix with the
joint coupling matrix. Their approach can partly avoid the numerical difficulty in TMM by, in certain sense,
reducing the length of transfer, but not completely.

On the other hand, the numerical instability can be completely removed in SEM, WTA and MRRM, all
employing exact solutions also, but in a traveling wave form. Formulations that are stable for numerical
calculation can be established by dividing waves in a member into two catalogues, i.e. arriving waves and
departing waves. Therefore, as a supplement to the powerful FEM, these three or other similar methods
should be appealing when high-frequency response is to be evaluated.

Here in this paper, we pay our attention to MRRM only, which is extended to modal analysis of three-
dimensional (3D) frames with or without lumped masses and elastic supports. Preliminaries of elastodynamics
of 3D frames are presented in Section 2. Formulations of MRRM for free vibration analysis are concisely
summarized in Section 3. A special algorithm is proposed, by which the numerical difficulty in determining
natural frequencies from complex-valued determinant as mentioned by Luongo and Romeo [31] is avoided
successfully. In Section 4, starting from Betti’s reciprocity theorem [32], the orthogonal conditions of different
natural modes are established. The mode superposition method (MSM) is then formulated for the transient
response analysis of structures. A remarkable feature of MSM is that distributed forces can be treated as well,
while in the traditional MRRM only concentrated forces applied at joints can be considered. Numerical
examples are given in Section 5 to validate the effectiveness of MRRM for free vibration analysis and the
feasibility of MSM for transient response analysis of complex 3D framed structures. The paper ends with some
conclusions drawn in Section 6.
2. Elastodynamics of 3D frames

2.1. Dynamic state of a space slender structural member

An arbitrary structural member in a 3D framed structure is seen as the carrier of longitudinal wave,
torsional wave and flexural (transverse) waves in two principal planes of cross section. All three types of
waves propagate independently in the member, but they are coupled by wave scattering at joints. Let the
centroid of all cross sections be a straight line and coincide with the x-axis of the local Cartesian coordinate
system (x, y, z). The motion of the member is described at each cross section perpendicular to the x-direction
by six components of a generalized displacement vector d ¼ [u, v, w, jx, jy, jz]

T, which exactly corresponds to
a generalized force vector f ¼ [Nx, Qy, Qz, Mx, My, Mz]

T of six components. Combining together all
components of the generalized displacement and force vectors gives the state vector v ¼ [dT, fT]T, which
describes the dynamic state of the structural member at any cross section. It depends on the coordinate x and
time t.
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2.2. Governing equations

The classical longitudinal rod theory, the Timoshenko beam theory, and the elementary torsional shaft
theory are adopted to describe the axial, flexural and torsional waves respectively. The corresponding
governing equations are
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qu
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for the flexural wave in xoy plane,
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for the flexural wave in xoz plane, and
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qjx
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þmxðx; tÞ ¼ rðxÞIxðxÞ

q2jx

qt2
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for the torsional wave. In the above equations, u(x, t), v(x, t) and w(x, t) are components of translational
displacement in x-, y- and z-directions, respectively; jx(x, t), jy(x, t) and jz(x, t) are rotations of the cross
section at position x about the x-, y- and z-axes, respectively; the cross sectional area A, its second moments
about x-, y- and z-axes, Ix, Iy and Iz, mass density r, Young’s modulus E, and shear modulus G can be
functions of x as indicated. The shear coefficients ky and kz are introduced to take account of the shear
deformation in the beam, both assumed to be constants. Eqs. (1)–(4) can be rewritten concisely in a matrix
form as

Ldðx; tÞ ¼M€dðx; tÞ � qðx; tÞ (5)

where

M ¼ rðxÞdiag AðxÞ;AðxÞ;AðxÞ; IxðxÞ; IyðxÞ; IzðxÞ
� �

; L ¼
L11 L12

L21 L22

" #

are operator matrices with respect to mass and stiffness properties, respectively, and q ¼ [qx, qy, qz, mx, my,
mz]

T is the external force vector. The elements of operator matrix L are given in Appendix A. The dot over a
quantity denotes partial differentiation with respect to time. For a non-uniform member, although solution to
Eq. (5) can be expressed in terms of the propagator [33], it is not easy to perform calculation for a practical
problem. Alternatively, one can divide the member along the x-axis into many segments of small length. Each
segment can be approximated by a uniform member with constant geometric and material parameters. In so
doing, the number of members and that of joints increase, but the analysis procedure keeps unaltered. Hence,
in MRRM, we will assume that all members in the structure are uniform. On the other hand, the orthogonality
of natural modes can be established for a structure with non-uniform members, as to be shown in Section 4.
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2.3. Solutions

As is well-known, the general solution of an inhomogeneous equation is the summation of a particular
solution and the supplementary solution corresponding to the associated homogeneous equation. We first
consider the homogeneous counterpart of Eq. (5). By the method of separation of variables, one assumes

dðx; tÞ ¼ d̂ðx;oÞrðtÞ (6)

where all components of the generalized displacement vector vary in unison with time variable t. Substituting
Eq. (6) into the homogeneous counterpart of Eq. (5) gives

Ld̂ðx;oÞrðtÞ ¼Md̂ðx;oÞ€rðtÞ or
Ld̂ðx;oÞ

Md̂ðx;oÞ
¼
€rðtÞ

rðtÞ
¼ l (7)

where l ¼ �o2 should be a negative constant. Thus, we have

€rðtÞ þ o2rðtÞ ¼ 0 (8)

with the following solution:

rðtÞ ¼ C1e
�iot þ C2e

iot (9)

from which o is identified as the circular frequency of a monochromatic wave or of harmonic vibration. For
free vibration, we can only take r ¼ e�iot without loss of generality. Thus, the solution to the homogeneous
counterpart of Eq. (5) is

dðx; tÞ ¼ d̂ðx;oÞe�iot (10)

where the over caret denotes amplitude or quantity in the frequency domain (the spectral quantity) if Fourier
transform is employed.

If the structure is subject to simple harmonic external force vector q̂ðx;oÞe�iot with o being the forcing
frequency, Eq. (10) denotes the steady-state response [34], while the amplitude vector d̂ðx;oÞ satisfies the
following equation:

Ld̂ðx;oÞ ¼ �o2Md̂ðx;oÞ � q̂ðx;oÞ (11)

which will be solved by MRRM shown in the next section.

3. Free vibration analysis of complex 3D framed structures with MRRM

MRRM [9–13] has been developed for transient response analysis of planar frames directly based on
continuous waveguide models. The solutions to governing equations of a structural member are expressed in
terms of traveling wave functions in the frequency domain (Fourier transformed domain). Equilibrium
conditions of forces and compatibility conditions of displacements at each joint as well as phase relations of
waves in each member are utilized to form a matrix equation to determine the unknown wave amplitudes. The
transient response is then obtained as an inverse Fourier integral of the steady-state response over the entire
frequency range of �NoooN. For evaluating the early time response, Neumann series expansion is utilized
to transform the integrand with an infinite number of poles, which correspond to natural frequencies of the
structure, to that without poles. Although MRRM shows certain advantages in transient response analysis, it
has not been applied to free vibration problems yet. We will briefly summarize below the main procedure of
MRRM for free vibration analysis of a complex 3D structure by following the general notions in Ref. [14].

3.1. Global and local dual coordinates

A representative complex 3D framed structure is shown in Fig. 1. All connecting points of structural
members and acting points of concentrated loads are treated as joints in MRRM. The two ends (joints) of a
member are denoted as J and K, for instance, and the member will be referred to as JK or KJ. A global
coordinate system (X,Y,Z) is used for the whole structure and a pair of local dual coordinate systems (xJK, yJK,
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Fig. 1. A representative complex 3D framed structure: (a) geometry of the structure and global coordinates; (b) local dual coordinates of

typical structural members; (c) translational displacements and resultant forces in dual coordinates; (d) rotational displacements and

moments in dual coordinates.
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zJK) and (xKJ, yKJ, zKJ) for each member JK (KJ) with xJK originating from J to K and xKJ from K to J. Thus
xJK and xKJ are opposite to each other, and we have

xKJ ¼ lJK
� xJK (12)
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at an arbitrary point of a member in dual coordinates. The axes yJK, zJK, yKJ and zKJ coincide with the
principal inertia axes of the cross section of the member. The directions of yJK and yKJ are opposite to each
other, while those of zJK and zKJ are coincident, following the right-handed screw rule. Note that the use of
local dual coordinates for each structural member is unique in MRRM, giving a clear physical image of wave
propagation in members and wave scattering at joints. Furthermore, formulations without the problem of
numerical instability for high-frequency analysis can be naturally achieved. A detailed comparison between
MRRM and MTM, which employs a single coordinate system for each member, can be found in Ref. [13].

To make it clear, superscripts JK or KJ will be affixed to all symbols to indicate the corresponding
coordinates. The coordinate systems and the sign convention of physical variables are depicted in Fig. 1. For
the discussion of a general framed structure, we denote the total number of joints as n, the total number of
members as m, and the number of members connected to joint J as mJ. Clearly, since each member has two
ends, we have

Pn
J¼1mJ ¼ 2m.

Hereafter, for the free vibration problem, all symbols without over caret, including the generalized
displacement vector d, generalized force vector f, etc., indicate amplitudes of the respective physical quantities.

3.2. Traveling wave solutions of the reduced governing equations

For free vibration of (free wave propagation in) a uniform member (JK for instance), Eqs. (1)–(4) can be
reduced to (with superscripts JK omitted in this subsection)

d2u

dx2
þ
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c21
u ¼ 0 (13)

for longitudinal wave,
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for flexural wave in xoy plane,

d2w

dx2
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for flexural wave in xoz plane, and

d2jx

dx2
þ

o2

c22
jx ¼ 0 (16)

for torsional wave. In previous equations, c1 ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
and c2 ¼

ffiffiffiffiffiffiffiffiffi
G=r

p
are the axial and shear wave velocities,

respectively. The solutions to Eqs. (13)–(16) can be written in matrix form as

dðx;oÞ ¼ Adðx;oÞaðoÞ þDdðx;oÞdðoÞ (17)

Accordingly, the generalized force vector is

fðx;oÞ ¼ Af ðx;oÞaðoÞ þDf ðx;oÞdðoÞ (18)

In the two expressions, we have introduced the arriving wave vector a and departing wave vector d defined
as follows:

aðoÞ ¼ ½a1ðoÞ; a2ðoÞ; a3ðoÞ; a4ðoÞ; a5ðoÞ; a6ðoÞ�T

dðoÞ ¼ ½d1ðoÞ; d2ðoÞ; d3ðoÞ; d4ðoÞ; d5ðoÞ; d6ðoÞ�T
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with aj and dj (j ¼ 1,2,y,6) being the arriving wave amplitudes and the departing wave amplitudes of various
waves, respectively. The elements of the phase matrices Ad(x; o), Dd(x; o), Af(x; o) and Df(x; o) are given in
Appendix B.

3.3. Joint coupling equations and scattering relations

For a perfectly connected joint (J for instance), the equilibrium of forces and the compatibility of
displacements lead to

XmJ

K¼1

ðTJK Þ
TfJK ð0;oÞ ¼ KJ

1u
JðoÞ; ðTJK Þ

TdJK ð0;oÞ ¼ uJðoÞ ðK ¼ 1; 2; . . . ;mJÞ (19)

where uJ(o) denotes the generalized displacement vector consisting of three components of translational
displacement and another three components of rotational displacement of joint J in the global coordinate
system (X, Y, Z), TJK is the coordinate transformation matrix between the local coordinate system (xJK, yJK,
zJK) and the global coordinate system (X, Y, Z), KJ

1 ¼ KJ � o2MJ signifies the equivalent stiffness matrix due
to the lumped mass and elastic constraint of joint J with KJ and MJ being the stiffness and mass matrices,
respectively.

Substituting Eqs. (17) and (18) into Eq. (19), yields the local scattering relations at joint J in form of

dJ
¼ SJaJ [9–14], with SJ being the local scattering matrix, aJ ¼ ½ðaJ1Þ

T; ðaJ2Þ
T; . . . ; ðaJK Þ

T; . . . ; ðaJmJ

Þ
T
�T and

dJ ¼ ½ðdJ1Þ
T; ðdJ2Þ

T; � � � ; ðdJK Þ
T; � � � ; ðdJmJ

Þ
T
�T the joint arriving and departing wave vectors, respectively. By

assembling all joint scattering relations together, we obtain the global scattering relations [9–14]

d ¼ Sa (20)

where S ¼ diag½S1;S2; . . . ;SJ ; . . . ;Sn� is the global scattering matrix of order 12m� 12m, a ¼

½ða1ÞT; ða2ÞT; . . . ; ðaJÞ
T; . . . ; ðanÞ

T
�T and d ¼ ½ðd1ÞT; ðd2ÞT; . . . ; ðdJÞ

T; . . . ; ðdnÞ
T
�T are respectively the global

arriving and departing wave vectors of order 12m� 1.
It is noted that, if there is pin-connected joint (such as joint M of the frame shown in Fig. 1), the

compatibility conditions about rotation should be replaced by the vanishing of moments at that joint,
MJK

i ð0;oÞ ¼ 0 ðK ¼ 1; 2; . . . ;mJÞ. Meanwhile, the Euler’s equation of angular momentum of the joint in
the first equation of Eq. (19) should be removed. For other kinds of joint, the equilibrium equations and the
compatibility conditions should also be rewritten according to the property of the joint [14]. In any case, the
joint scattering relations as well as the global scattering relations can be written in the same form as described
above.

3.4. Compatibility conditions of physical variables in local dual coordinates and phase relations

The generalized displacement and force vectors in local dual coordinates for an arbitrary member JK (KJ)
should satisfy

dJK ðxJK Þ ¼ Tdd
KJ ðlJK

� xJK Þ; fJK ðxJK Þ ¼ Tf f
KJ ðlJK

� xJK Þ (22)

where

Td ¼ diag½�1;�1; 1;�1;�1; 1�; Tf ¼ diag½1; 1;�1; 1; 1;�1� (23)

It is obvious that TdTf ¼ �I6� 6, here I6� 6 is a unit matrix of order 6. Substitution of Eq. (17) into the first
of Eq. (22) gives the local phase relations a

JK
¼ P

JK(lJK; o)dJK and a
KJ
¼ P

JK(lJK; o)dJK for member JK.
These can be assembled in sequence to obtain the joint phase relations aJ ¼ PJðoÞd̄J

for joint J and the global
phase relations for the whole structure

a ¼ PðoÞd̄ ¼ PðoÞUd (24)

with PJ ¼ diag½PJ1;PJ2; . . . ;PJK ; . . . ;PJmJ

� and P ¼ diag½P1;P2; . . . ;PJ ; . . . ;Pn� being the joint and global
phase matrices. The departing wave vector d̄ ¼ ½ðd̄

1
Þ
T; ðd̄

2
Þ
T; . . . ; ðd̄

J
Þ
T; . . . ; ðd̄

n
Þ
T
�T, where
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d̄
J
¼ ½ðd1J Þ

T; ðd2JÞ
T; . . . ; ðdKJ Þ

T; . . . ; ðdmJ JÞ
T
�T, has the same elements as d but with a different sequence. U is the

permutation matrix of order 12m� 12m with only one element of unit (1) in each row and column and the
others being zero; it is introduced to take account of the different sequences of elements in d and d̄.
3.5. Reverberation-ray matrix and frequency equation

Substituting Eq. (24) into Eq. (20) or substituting Eq. (20) into Eq. (24) gives

½I� RðoÞ�dðoÞ ¼ 0; ½I� R0ðoÞ�aðoÞ ¼ 0 (25a,b)

where R(o)�S(o)P(o)U is the reverberation-ray matrix previously defined in Refs. [9–14], R0(o)�P(o)US(o)
is another form of reverberation-ray matrix. Both are complex, sparse, and unsymmetric matrices, and
describe the physical essence of wave scattering at all joints and wave traveling along all members. However,
the matrix R, formed when the departing wave vector is treated as unknown, indicates that wave traveling
along members takes place first, then followed by wave scattering at joints, while the matrix R0, formed when
the arriving wave vector is the unknown, implies that wave scattering at joints happens first, and the traveling
of waves along members then follows. This understanding is very important when using the Neumann series
expansion to perform the inverse Fourier integration for transient analysis, see the discussion on causality of
wave propagation associated with MRRM in Ref. [11]. Since we only use MRRM to perform the free
vibration analysis in this work, there is no difference between the two mathematically equivalent formulations
given in Eq. (25). For non-trivial solution to exist, the coefficient determinant of Eq. (25a) or (25b) should
vanish. Taking Eq. (25a) for instance, we have

jI� RðoÞj ¼ 0 (26)

which is the frequency equation of the structure.
3.6. Natural frequencies and normal modes analysis

To find the roots of Eq. (26), i.e. the natural frequencies of the structure, or (r ¼ 1,2,3,y), a hybrid
searching scheme is employed, which combines the bisection method and golden section method and performs
very well for planar frames as demonstrated in Ref. [35]. The associated natural modes can be calculated
based on the associated non-trivial solutions dr (r ¼ 1,2,3,y) of Eq. (25) [36], which are obtained in the
following way.
(i)
 For a certain natural frequency or, the rank of the coefficient matrix I�R(or) is first calculated. Denote it
as rc. Then nc ¼ 12m�rc is equal to the number of coincident frequencies of or. Find out the linearly
independent set d0, a column matrix of order rc� 1, and rewrite Eq. (25) as

G0d0 ¼ Gcdc (27)

where G0 is a sub-matrix of order rc� rc and rank rc, which is a principle minor of jI� Rj; Gc is a
rectangular coefficient matrix of order rc� nc, which is complementary to G0; dc, of order nc� 1, is the
complementary subset to d0 of the entire column d. The elements of dc are understood to be free variables
and independent of each other, while the elements of d0 are determined from those of dc by Eq. (27).
(ii)
 Let only one element in dc equal 1 and others 0, and solve for d0 from Eq. (27). This determines one non-
trivial solution corresponding to or.
(iii)
 If nc41, repeat step (ii) but let a different element be 1. The procedure are conducted nc times and nc

independent non-trivial solutions can be obtained for the nc coincident frequencies of or.
After d is obtained, a is easily calculated from Eq. (24). The generalized displacements are then calculated
accordingly from Eq. (17). These displacement vectors are nc linearly independent natural modes for nc

coincident frequencies of or. They can be further orthogonalized by the scheme of Schmidt orthogonalization.
Thus we can always assume that the modes for coincident frequencies are orthogonal with each other.
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In the following section, we will further prove that the modes for non-coincident frequencies are mutually
orthogonal in both the dual and single coordinates. Based on the orthogonality of different natural modes, the
mode superposition method for transient response analysis can be formulated accordingly.

4. Orthogonality of normal modes and forced vibration analysis

Transient response of structures can be obtained conveniently by the mode superposition method if the
natural modes are orthogonal with each other. In a previous paper [35], we have established the orthogonality of
natural modes for planar framed structures with optional lumped masses and/or elastic supports. In this paper, a
different procedure which utilizes Betti’s reciprocity theorem [32] will be adopted for the establishment of
orthogonality of natural modes for complex 3D framed structures. Similar discussion has been given in Ref. [1]
to demonstrate the orthogonality of modes of axial and flexural vibrations for a simple rod.

4.1. Orthogonality of natural modes

Assume dJK
i ¼ ½u

JK
i ; vJK
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i ;jJK

xi ;j
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yi ;j
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Tand dJK
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vectors of member JK in coordinates (x, y, z)JK corresponding to two different natural frequencies oi and

oj (oi,j 6¼0), while dKJ
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xj ;j
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yj ;j
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T are those in

dual coordinates (x, y, z)KJ. For free vibration problem, applying Betti’s reciprocity theorem [32] to the
segment from 0 to xJK (0oxJKplJK) of member JK in coordinate (x, y, z)JK givesZ xJK
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i
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where fJK
Ii and fJK

Ij are given by

fJK
Ii ¼ �o

2
i
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0
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Note that Z xJK
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Then from Eq. (28) we have
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(31)

Similar equations can be established for the segment from 0 to lJK
�xJK of member JK in coordinates

(x, y, z)KJ. Summing up equations for all m members in the dual coordinates, we obtain
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where k is the sequence number of member JK (or KJ) in the total m members. In this paper, we sometimes
also affix a single subscript to a material/geometric parameter or even an operator matrix of member (say JK),
such as lk�lJK, Mk�M

JK and Lk�L
JK. In view of the compatibility conditions of physical variables in dual

coordinates of all m members as shown in Eq. (22) and the joint coupling equations of all n joints as given in
Eq. (19) (or similar [35]), Eq. (32) further gives
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which has the same form as that given in Ref. [35] for planar frames. Eq. (33) indicates that
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For oi6¼oj, we have
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Furthermore, from Eq. (19) we obtain
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Pre-multiplying by uJ
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T and summating over all n joints, we arrive at
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Although Eq. (37) is derived based on Eq. (19) for a perfectly rigid joint, it is also applicable to pinned joints
and other elastically supported joints as shown in Ref. [35]. Moreover, from the homogenous counterpart of
Eq. (11) we have
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Substitution of Eqs. (37) and (38) into Eq. (35) gives
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When xJK
¼ lJK

�lk, Eqs. (35) and (39a) become

Xm

k¼1

Z lk

0

dJK
i

	 
T
MJKdJK

j dx

� �
þ
Xn

J¼1

uJ
i

	 
T
MJuJ

j

h i
¼ 0 (40)

Xm

k¼1

Z lk

0

dJK
i

	 
T
LJKdJK

j dx

� �
þ
Xn

J¼1

XmJ

K¼1

dJK
i ð0Þ

� �T
fJK

j ð0Þ
n o

�
Xn

J¼1

uJ
i

	 
T
KJuJ

j

h i
¼ 0 (41)

where only the coordinate system (x, y, z)JK is involved. As shown in Eqs. (35), (39), (40) and (41), two
different natural modes are orthogonal in both the dual coordinates and the single coordinates in a global
sense.

Now the orthogonal conditions of natural modes can be stated as
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in dual and single coordinates, respectively, where
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is the norm of the natural mode, i.e. the generalized mass, corresponding to the frequency oj, and dji is the
Kronecker delta. The derivation of the second equality in Eq. (44) was given in Ref. [35].

The conditions of orthogonality of natural modes can also be represented as

Xm

k¼1

Z xJK

0

dJK
i

	 
T
LJKdJK

j dx

" #
þ
Xm

k¼1

Z lJK
�xJK

0

dKJ
i

	 
T
LKJdKJ

j dx

" #

þ
Xn

J¼1

XmJ

K¼1

dJK
i ð0Þ

� �T
fJK

j ð0Þ
n o

�
Xn

J¼1

uJ
i

	 
T
KJuJ

j

h i
¼ �Kjdji (45)

Xm

k¼1

Z lk

0

dJK
i

	 
T
LJKdJK

j dx

� �
þ
Xn

J¼1

XmJ

K¼1

dJK
i ð0Þ

� �T
fJK

j ð0Þ
n o

�
Xn

J¼1

uJ
i

	 
T
KJuJ

j

h i
¼ �Kjdji (46)



ARTICLE IN PRESS
Y.Q. Guo et al. / Journal of Sound and Vibration 317 (2008) 716–738 727
in dual and single coordinates, respectively, where
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is the generalized stiffness corresponding to the frequency oj. The relation between the generalized mass
and generalized stiffness of complex 3D structures is identical to that of a multi-degree-of-freedom (mdof)
system, viz.

Kj ¼ o2
j Mj ðj ¼ 1; 2; . . . ;1Þ (48)
4.2. Mode superposition based on mode orthogonality

Having established the orthogonality of natural modes as given in Eqs. (42) and (43) as well as (45) and (46),
we can develop the mode superposition method for transient response analysis of complex 3D framed
structures. The procedure is almost the same as that outlined in Ref. [35] for planar frames, and hence only
some key formulations are given in the following. Changing the symbols dJK, dJK

i and dJK
j to dk, dki and dkj,

respectively, we may express the displacement responses of member k in terms of natural modes of the
structure
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Note that the new symbols with a single subscript k replacing the double superscripts JK are more
convenient to be used in the mode superposition method. Then, from the governing equations (Eq. (5)) of all
m members, we can derive
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in which the effect of distributed force qk(x, t) is involved. From the joint coupling equations at all joints we
can obtain
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Eqs. (50) and (51) can be combined to give
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In view of the orthogonality conditions in Eqs. (43) and (46), we finally derive a single ordinary differential
equation for rj(t), that is
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A particular solution of Eq. (53) is given by the convolution integral or Duhamel integral [1] as
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The complementary solution of Eq. (53) vanishes for problems with zero initial conditions. Thus, the
complete solution of the forced vibration is given as the summation of the modal solutions:

dkðx; tÞ ¼
X1
j¼1

1
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Z t

0

QjðtÞ sin ojðt� tÞdt
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dkjðxÞ (56)

Other physical variables including strain, stress, generalized force, velocity, and acceleration, can be
determined accordingly.
Table 1

Parameters of the 3D frame

Material

parameters

Young’s modulus E

(Pa)

Shear modulus G

(Pa)

Shear coefficient kz Shear coefficient ky Mass density r (kg/m3)

2.0� 1011 7.6923� 1010 p2/12 p2/12 7800

Geometric

parameters

Area of cross-

section A (m2)

Moment of inertia

Ix (m4)

Moment of inertia

Iy (m4)

Moment of inertia

Iz (m
4)

Length of structural

members (m)

0.05� 0.05 1.4166� 10�6 5.2083� 10�7 5.2083� 10�7 l12 ¼ l23 ¼ l35 ¼ l56 ¼ 2.0

l34 ¼ 3.0

Table 2

Natural frequencies (rad/s) of the 3D frame

Mode no. FEM200 MRRM Mode no. FEM200 MRRM Mode no. FEM200 MRRM

1 10.51 10.51 12 324.09 324.09 35 1831.30 1831.17

2 10.89 10.89 14 388.89 388.89 40 2246.30 2248.68

3 51.89 51.89 16 463.08 463.08 45 2855.96 2855.94

4 54.68 54.68 18 735.07 735.07 50 3233.45 3235.86

5 142.94 142.94 20 800.16 800.18 55 3525.37 3526.16

6 146.84 146.84 22 872.61 872.61 60 4437.63 4437.50

7 190.87 190.87 24 974.58 974.56 70 5817.79 5817.72

8 205.22 205.22 26 1077.13 1077.13 80 6975.59 6975.72

9 244.64 244.64 28 1217.93 1217.91 90 8573.41 8572.99

10 253.32 253.32 30 1481.26 1481.29 100 9818.11 9817.88
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Fig. 2. Comparison of natural modes: (a) 1st mode; (b) 2nd mode; (c) 5th mode; (d) 10th mode; (e) 20th mode.

Y.Q. Guo et al. / Journal of Sound and Vibration 317 (2008) 716–738 729



ARTICLE IN PRESS
Y.Q. Guo et al. / Journal of Sound and Vibration 317 (2008) 716–738730
5. Numerical examples

Consider the three-dimensional frame with a lumped mass and an elastic support at joint 2 (J), as shown in
Fig. 1. Note that joints K (3) and M (5) are rigid and pinned, respectively; joint I (1) is hinged, while both
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Fig. 3. Transient response of bending moment of the mid-section of member 2–3 under concentrated load at joint 5 (to0.005 s):

(a) response for 0ptp0:005 s; (b) details of response for 0ptp0:002.
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joints L (4) and N (6) are fixed; joint J (2) is rigid, attached with a lumped mass and an elastic support. The
material and geometric parameters are presented in Table 1.

The stiffness coefficient of the elastic support (along Y direction only) and the mass of the lumped body are
taken as ky ¼ 1000N/m and m ¼ 1000 kg, respectively. Dynamic analyses including free vibration and
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Fig. 4. Transient response of bending moment of the mid-section of member 2–3 under concentrated load at joint 5 (to0.01 s):

(a) response for 0ptp0:01 s; (b) details for 0:005ptp0:007 s.
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transient response of the 3D frame are conducted by FEM and MRRM using various schemes. In FEM, the
commercial software ANSYS is utilized and each structural member is discretized into 200 elements (the
corresponding solution is indicated by FEM-200).

5.1. Free vibration

Some natural frequencies of the frame calculated by MRRM using the proposed root-searching technique
outlined in Section 3.6, as well as by ANSYS, are listed in Table 2. Some natural modes calculated by MRRM
according to the steps given in Section 3.6 are also compared with those calculated by ANSYS, as shown in
Fig. 2. It is shown that the natural frequencies and normal modes obtained by MRRM generally agree very
well with those by FEM using a very fine mesh.
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Fig. 5. Transient response of bending moment of the mid-section of member 2–3 under concentrated load at joint 5 (to0.05 s):

(a) response for 0ptp0.05 s; (b) details for 0ptp0.015 s; (c) details for 0.015ptp0.030 s.
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5.2. Transient response

(1) Response due to concentrated load applied at joint 5: Suppose that a downward force in the form of a step
function with magnitude 1000 kN is applied at joint 5 (M). We employ three different schemes for MRRM for
comparison, including the original Neumann series expansion (MRRM-NSE) proposed in Refs. [9–13], the
artificial damping technique (MRRM-ADT) suggested by Guo and Chen [14], the mode superposition method
(MRRM-MSM) formulated basing on the orthogonality of natural modes put forward firstly in Ref. [35] for
planar frames and extended in this paper to complex 3D frames. Furthermore, FEM analyses (ANSYS) are
also performed with two different schemes, i.e. the full direct integration method (ANSYS-Full) and the mode
superposition method (ANSYS-MSM100, with 100 denoting that the first 100 modes are included in the
calculation). The bending moment responses at the mid-section of member 2–3 (JK) for periods of duration
0.005 s (Case A), 0.01 s (Case B) and 0.05 s (Case C) are calculated and are shown in Figs. 3–5. In the
calculation, time steps 0.00001, 0.00002 and 0.0001 s are adopted for Cases A, B, and C, respectively. In
MRRM-NSE, the first 12, 24 and 13 terms are kept in the Neumann series for Cases A, B and C, respectively,
and the results are indicated by MRRM-NSEX, where X ¼ 12, 24 and 13. In MRRM-ADT, the frequency
independent artificial damping ratio [14] is taken to be 25.64, 12.82 and 2.564, respectively; they are
determined by the rule suggested in Refs. [37,38]. Both MRRM-NSE and MRRM-ADT employ 16,384
sampling points in the inverse FFT algorithm. On the other hand, we utilize the composite trapezoidal rule
(CTR) for performing the integration of the Duhamel integral in MRRM-MSM with 100 equal subintervals
adopted for the integral over the length of each structural member. A total of 100 modes are taken into
consideration to guarantee the convergence of calculated results.

Results in Figs. 3–5 indicate that the three methods, i.e. ANSYS-Full, ANSYS-MSM100 and MRRM-
MSM100, agree with each other quite well, although difference does exist in predicting response at the very
early time, for which the high-frequency components should play an important role. Note that accurate
response at very early time could be obtained by MRRM-NSE [9–12] as well as MRRM-ADT [14].
Consequently, a hybrid transient analysis consisting of MRRM-NSE and MRRM-ADT for early time
response and MRRM-MSM for medium-term and long-term responses shall be preferred.
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Fig. 6. Transient response of bending moment of the mid-section of member 2–3 under distributed load on member 2–3 (to0.005 s).
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(2) Response due to distributed load applied on member 2– 3: Consider a downward distributed load in the
form of a step function with magnitude 1000 kN/m is uniformly applied on member 2–3 (JK). The bending
moment responses at the mid-section of member 2–3 are calculated for periods of duration 0.005 s (Case A),
0.01 s (Case B), 0.05 s (Case C), 0.1 s (Case D) and 0.5 s (Case E). The results by the mode superposition
method with MRRM for free vibration analysis (MRRM-MSM) are compared in Figs. 6–10 with those by
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Fig. 8. Transient response of bending moment of the mid-section of member 2–3 under distributed load on member 2–3 (to0.05 s).
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FEM using the full direct integration scheme (ANSYS-Full) and the mode superposition scheme (ANSYS-
MSM100). Different time steps 0.00001, 0.00002, 0.0001, 0.0002 and 0.001 s are adopted for Cases A–E,
respectively. The same parameters as for concentrated load are used in MRRM-MSM to perform the
Duhamel integral except that a number of 50 natural modes are also considered for comparison.
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The conclusions from the results in Figs. 6–10 are similar to those for the concentrated load case. Note that
the difference between ANSYS and MRRM-MSM, although very small, increases with the time, as shown in
Fig. 10. This may be due to the fact that MRRM-MSM is formulated on the continuum model, while ANSYS
is based on the approximate discrete model. We also note that the results of MRRM-MSM100 and those of
MRRM-MSM50 agree very well for moderate and long period of duration (tX0.05 s), while small difference
exists between them at early period of duration (to0.05 s). This indicates that relatively more natural modes
shall be involved for response at early time when high frequency components play an important role.
6. Conclusion

The method of reverberation-ray matrix is extended to free vibration analysis of three-dimensional framed
structures with optional lumped masses and/or elastic supports. Based upon Betti’s reciprocity theorem, the
orthogonal conditions of natural modes are established. Transient response analysis based on the expansion of
normal mode is thus put forward. Such analysis is especially suitable for medium-time and long-term
responses because the difficulties associated with inverse Fourier transform can be avoided. Furthermore, it
can be applied for the case of distributed loads, while the original MRRM can consider concentrated loads
applied at joints only.
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Appendix A. Operator matrix L
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Appendix B. Phase matrices

Adðx;oÞ ¼

eik1x 0 0 0 0 0

0 eik2x eik3x 0 0 0

0 0 0 0 eik5x eik6x

0 0 0 eik4x 0 0

0 0 0 0 a5eik5x a6eik6x

0 a2eik2x a3eik3x 0 0 0

2
6666666664

3
7777777775

(B.1)

Ddðx;oÞ ¼

e�ik1x 0 0 0 0 0

0 e�ik2x e�ik3x 0 0 0

0 0 0 0 e�ik5x e�ik6x

0 0 0 e�ik4x 0 0

0 0 0 0 �a5e�ik5x �a6e�ik6x

0 �a2e�ik2x �a3e�ik3x 0 0 0

2
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3
7777777775

(B.2)

Af ðx;oÞ ¼

z1eik1x 0 0 0 0 0

0 z2eik2x z3eik3x 0 0 0

0 0 0 0 z5eik5x z6eik6x

0 0 0 z4eik4x 0 0

0 0 0 0 x5eik5x x6eik6x

0 x2eik2x x3eik3x 0 0 0

2
6666666664

3
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(B.3)

Df ðx;oÞ ¼ �

z1e�ik1x 0 0 0 0 0

0 z2e�ik2x z3e�ik3x 0 0 0

0 0 0 0 z5e�ik5x z6e�ik6x

0 0 0 z4e�ik4x 0 0

0 0 0 0 �x5e�ik5x �x6e�ik6x

0 �x2e�ik2x �x3e�ik3x 0 0 0

2
6666666664

3
7777777775

(B.4)

where

k1 ¼ o=c1; k2;3 ¼
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,

a5;6 ¼
o2=ðkzc22Þ � k2

5;6

ik5;6
; z1 ¼ ik1EA; z2;3 ¼ ðik2;3 � a2;3ÞkyGA; z4 ¼ ik4GIx,

z5;6 ¼ ðik5;6 � a5;6ÞkzGA; x2;3 ¼ ik2;3a2;3EIz; x5;6 ¼ ik5;6a5;6EIy (B.5)
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